Part Number Hot Search : 
74VHC245 18X40 VTT1225H BPC80 4HC17 XC9116 74ACT1 V20220
Product Description
Full Text Search
 

To Download TS488IST Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS488-TS489
Pop-free 120mW stereo headphone amplifier
Features

TS488IST - MiniSO-8
OUT (1) VIN (1) BYPASS GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN (2) SHUTDOWN
Pop and click noise protection circuitry Operating range from VCC = 2.2V to 5.5V Standby mode active low (TS488) or high (TS489) Output power: - 120mW @5V, into 16 with 0.1% THD+N max (1kHz) - 55mW @3.3V, into 16 with 0.1% THD+N max (1kHz) Low current consumption: 2.7mA max @5V Ultra low standby current consumption: 10nA typical High signal-to-noise ratio High crosstalk immunity: 102dB (F = 1kHz) PSRR: 70dB typ. (F = 1kHz), inputs grounded @5V Unity-gain stable Short-circuit protection circuitry Available in lead-free MiniSO-8 & DFN8 2mm x 2mm
TS488IQT - DFN8
Vcc OUT (1) VIN (1) Bypass
1 2 3 4
8 7 6
OUT (2) VIN (2) Shutdown

5 GND
TS489IST - MiniSO-8
OUT (1) VIN (1) BYPASS GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN (2) SHUTDOWN
TS489IQT - DFN8
Vcc
1 2 3 4
8 7 6
OUT (2) VIN (2) Shutdown
Description
The TS488/9 is an enhancement of TS486/7 that eliminates pop and click noise and reduces the number of external passive components. The TS488/9 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16 or a 32 stereo headset. Capable of descending to low voltages, it delivers up to 31mW per channel (into 16 loads) of continuous average power with 0.1% THD+N in the audio bandwidth from a 2.5V power supply. An externally-controlled standby mode reduces the supply current to 10nA (typ.). The unity gain stable TS488/9 is configured by external gainsetting resistors.
OUT (1) VIN (1) Bypass
5 GND
Applications
Headphone amplifier Mobile phone, PDA, computer motherboard High-end TV, portable audio player
September 2006
Rev 4
1/32
www.st.com 32
Contents
TS488-TS489
Contents
1 2 3 4 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Lower cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Higher cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 POP performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Connecting the headphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 5.2 MiniSO-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DFN8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/32
TS488-TS489
Typical application schematic
1
Typical application schematic
Figure 1. Typical application for the TS488-TS489
TS488=stdby TS489=stdby
Table 1.
Application component information
Functional description Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)). Input coupling capacitor that blocks the DC voltage at the amplifier's input terminal. Feedback resistor that sets the closed loop gain in conjunction with Rin. AV= Closed Loop Gain= -Rfeed/Rin. Supply output capacitor that provides power supply filtering. Bypass capacitor that provides half supply filtering. Output coupling capacitor that blocks the DC voltage at the load input terminal. This capacitor also forms a high pass with RL (Fc = 1 / (2 x Pi x RL x Cout)).
Component Rin1,2 Cin1,2 Rfeed1,2 Cs Cb Cout1,2
3/32
Absolute maximum ratings and operating conditions
TS488-TS489
2
Absolute maximum ratings and operating conditions
Table 2.
Symbol VCC Vi Tstg Tj Rthja Supply voltage (1) Input voltage Storage temperature Maximum junction temperature Thermal resistance junction to ambient MiniSO-8 DFN8 Power dissipation(2): MiniSO-8 DFN8 Human body model (pin to pin) Machine model 220pF - 240pF (pin to pin) Latch-up immunity (all pins) Lead temperature (soldering, 10sec) Output short-circuit to VCC or GND
1. All voltage values are measured with respect to the ground pin. 2. Pdiss is calculated with Tamb = 25C, Tj = 150C. 3. Attention must be paid to continuous power dissipation (VDD x 250mA). Short-circuits can cause excessive heating and destructive dissipation. Exposing the IC to a short-circuit for an extended period of time will dramatically reduce the product's life expectancy.
Absolute maximum ratings
Parameter Value 6 -0.3V to VCC +0.3V -65 to +150 150 215 70 0.58 1.79 2 200 200 250 continuous
(3)
Unit V V C C C/W
Pdiss ESD ESD Latch-up
W kV V mA C
Table 3.
Symbol VCC RL Toper CL
Operating conditions
Parameter Supply voltage Load resistor Operating free air temperature range Load capacitor: RL = 16 to 100 RL > 100 Standby voltage input: TS488 active, TS489 in standby TS488 in standby, TS489 active Thermal resistance junction to ambient MiniSO-8 DFN8(2) Value 2.2 to 5.5 16 -40 to + 85 400 100 1.5 V VCC GND VSTBY 0.4 (1) 190 40 Unit V C pF
VSTBY
V
Rthja
C/W
1. The minimum current consumption (ISTBY) is guaranteed at GND (TS488) or VCC (TS489) for the whole temperature range. 2. When mounted on a 4-layer PCB.
4/32
TS488-TS489
Electrical characteristics
3
Table 4.
Symbol ICC
Electrical characteristics
Electrical characteristics at VCC = +5V with GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Supply current Conditions No input signal, no load No input signal, VSTBY = GND for TS488, RL=32 No input signal, VSTBY = VCC for TS489, RL=32 THD+N = 0.1% max, F = 1kHz, RL = 32 Pout Output power THD+N = 1% max, F = 1kHz, RL = 32 THD+N = 0.1% max, F = 1kHz, RL = 16 THD+N = 1% max, F = 1kHz, RL = 16 Total harmonic distortion + noise AV=-1, RL = 32, Pout = 60mW, 20Hz F 20kHz AV=-1, RL = 16, Pout = 90mW, 20Hz F 20kHz AV=-1, RL 16 Cb=1F, F = 1kHz, , Vripple = 200mVpp , AV=-1, RL 16 Cb=1F, F = 217Hz, Vripple = 200mVpp VOL: RL = 32 VO Output swing VOH: RL = 32 VOL: RL = 16 VOH: RL = 16 SNR Signal-to-noise ratio A weighted, AV=-1, RL = 32, THD+N < 0.4%, 20Hz F 20kHz RL = 32, AV = -1 F = 1kHz F = 20Hz to 20kHz 4.18 4.53 64 62 100 70 Min. Typ. 2 10 10 75 80 mW 120 130 0.3 % 0.3 70 dB 68 0.23 4.72 V 0.44 4.48 105 dB 0.57 0.31 Max. 2.7 1000 nA 1000 Unit mA
ISTBY
Standby current
THD+N
PSRR
Power supply rejection ratio, inputs grounded(1)
Crosstalk Channel separation Ci GBP SR VIO twu Input capacitance Gain bandwidth product Slew rate, unity gain inverting Input offset voltage Wake-up time
-102 -84 1
dB pF MHz V/s 20 mV ms
RL = 32 RL = 16 Vicm=VCC/2
1.1 0.65 1 100
1. Guaranteed by design and evaluation.
5/32
Electrical characteristics Table 5.
Symbol ICC
TS488-TS489
Electrical characteristics at VCC = +3.3V with GND = 0V, Tamb = 25C (unless otherwise specified) (1)
Parameter Supply current Conditions No input signal, no load No input signal, VSTBY = GND for TS488, RL=32 No input signal, VSTBY = VCC for TS489, RL=32 THD+N = 0.1% max, F = 1kHz, RL = 32 Min. Typ. 1.8 10 10 34 30 35 mW 55 47 57 0.3 % 0.3 63 61 69 dB 67 0.15 3.03 3.12 V 0.28 2.82 2.97 102 dB 0.36 0.2 Max. 2.5 1000 nA 1000 Unit mA
ISTBY
Standby current
Pout
Output power
THD+N = 1% max, F = 1kHz, RL = 32 THD+N = 0.1% max, F = 1kHz, RL = 16 THD+N = 1% max, F = 1kHz, RL = 16
THD+N
Total harmonic distortion + noise
AV = -1, RL = 32, Pout = 16mW, 20Hz F 20kHz AV = -1, RL = 16, Pout = 35mW, 20Hz F 20kHz AV = -1, RL 16 Cb=1F, F = 1kHz, , Vripple = 200mVpp , AV = -1, RL 16 Cb=1F, F = 217Hz, Vripple = 200mVpp VOL: RL = 32
PSRR
Power supply rejection ratio, inputs grounded(2)
VO
Output swing
VOH: RL = 32 VOL: RL = 16 VOH: RL = 16
SNR
Signal-to-noise ratio
A weighted, AV = -1, RL = 32, THD+N < 0.4%, 20Hz 20kHz F RL = 32, AV = -1 F = 1kHz F = 20Hz to 20kHz
Crosstalk Channel separation Ci GBP SR VIO twu Input capacitance Gain bandwidth product Slew rate, unity gain inverting Input offset voltage Wake-up time
-102 -84 1
dB pF MHz V/s 20 mV ms
RL = 32 RL = 16 Vicm=VCC/2
1.1 0.6 1 100
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V. 2. Guaranteed by design and evaluation.
6/32
TS488-TS489 Table 6.
Symbol ICC
Electrical characteristics
Electrical characteristics at VCC = +2.5V with GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Supply current Conditions No input signal, no load No input signal, VSTBY = GND for TS488, RL=32 No input signal, VSTBY = VCC for TS489, RL=32 THD+N = 0.1% max, F = 1kHz, RL = 32 Min. Typ. 1.8 10 10 19 18 20 mW 31 27 32 0.3 % 0.3 68 dB 66 0.12 2.3 2.36 V 0.22 2.15 2.25 100 dB 0.28 0.16 Max. 2.5 1000 nA 1000 Unit mA
ISTBY
Standby current
Pout
Output power
THD+N = 1% max, F = 1kHz, RL = 32 THD+N = 0.1% max, F = 1kHz, RL = 16 THD+N = 1% max, F = 1kHz, RL = 16
THD+N
Total harmonic distortion + noise
AV=-1, RL = 32, Pout = 10mW, 20Hz F 20kHz AV=-1, RL = 16, Pout = 16mW, 20Hz F 20kHz AV=-1, RL 16 Cb=1F, F = 1kHz, , Vripple = 200mVpp AV=-1, RL 16 Cb=1F, F = 217Hz, , Vripple = 200mVpp VOL: RL = 32
PSRR
Power supply rejection ratio, inputs grounded (1)
VO
Output swing
VOH: RL = 32 VOL: RL = 16 VOH: RL = 16
SNR
Signal-to-noise ratio
A weighted, AV=-1, RL = 32, THD+N < 0.4%, 20Hz F 20kHz RL = 32, AV=-1 F = 1kHz F = 20Hz to 20kHz
Crosstalk Channel separation Ci GBP SR VIO twu Input capacitance Gain bandwidth product Slew rate, unity gain inverting Input offset voltage Wake-up time
-102 -84 1
dB pF MHz V/s 20 mV ms
RL = 32 RL = 16 Vicm=VCC/2
1.1 0.6 1 100
1. Guaranteed by design and evaluation.
7/32
Electrical characteristics Table 7. Index of graphics
Description Open-loop frequency response Power derating curves Signal to noise ratio vs. power supply voltage Power dissipation vs. output power per channel Power supply rejection ratio vs. frequency Total harmonic distortion plus noise vs. output power Total harmonic distortion plus noise vs. frequency Output power vs. load resistance Output power vs. power supply voltage Output voltage swing vs. power supply voltage Current consumption vs. power supply voltage Current consumption vs. standby voltage Crosstalk vs. frequency
TS488-TS489
Figure Figure 2 to Figure 11 Figure 12 to Figure 13 Figure 14 to Figure 19 Figure 20 to Figure 22 Figure 23 to Figure 25 Figure 26 to Figure 43 Figure 44 to Figure 52 Figure 53 to Figure 55 Figure 56, Figure 57 Figure 58 Figure 59 Figure 60 to Figure 65 Figure 66 to Figure 77
8/32
TS488-TS489
Electrical characteristics
Figure 2.
125 100 75
Gain (dB)
Open-loop frequency response
225
gain Vcc=2.5V RL=16 T AMB =25C
Figure 3.
125 100 75
Phase () Gain (dB)
Open-loop frequency response
225
gain Vcc=5V RL=16 TAMB=25C
180 135 90 45 0
180 135
Phase ()
50 25 0 phase -25 -50 -75 0 10
2 4 6
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
-45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
Figure 4.
125
Open-loop frequency response
225
gain Vcc=2.5V RL=16 CL=400pF T AMB =25C
Figure 5.
125
Open-loop frequency response
225
gain Vcc=5V RL=16 CL=400pF TAMB=25C
100 75
Gain (dB)
180 135
Phase () Gain (dB)
100 75 50 25 0 phase -25 -50 -75 0 10
2 4 6
180 135
Phase ()
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
90 45 0 -45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
Figure 6.
125 100 75
Gain (dB)
Open-loop frequency response
225
gain Vcc=2.5V RL=32 T AMB =25C
Figure 7.
125 100 75
Phase () Gain (dB)
Open-loop frequency response
225
gain Vcc=5V RL=32 TAMB=25C
180 135 90 45 0
180 135
Phase ()
50 25 0 phase -25 -50 -75 0 10
2 4 6
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
-45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
9/32
Electrical characteristics
TS488-TS489
Figure 8.
125
Open-loop frequency response
225
gain Vcc=2.5V RL=32 CL=400pF T AMB =25C
Figure 9.
125
Open-loop frequency response
225
gain Vcc=5V RL=32 CL=400pF TAMB=25C
100 75
Gain (dB)
180 135
Phase () Gain (dB)
100 75 50 25 0 phase -25 -50 -75 0 10
2 4 6
180 135
Phase ()
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
90 45 0 -45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
Figure 10. Open-loop frequency response
125 100 75
Gain (dB)
Figure 11. Open-loop frequency response
125 100 75
Phase () Gain (dB)
225
gain Vcc=2.5V RL=600 T AMB =25C
225
gain Vcc=5V RL=600 TAMB=25C
180 135 90 45 0
180 135
Phase ()
50 25 0 phase -25 -50 -75 0 10
2 4 6
50 25 0 phase -25 -50 -75 0 10
2 4 6
90 45 0 -45 -90
10 10 10 10
8
-45 -90
10 10 10 10
8
-135
-135
Frequency (Hz)
Frequency (Hz)
Figure 12. Power derating curves
0.8 Package Power Dissipation (W)
MiniSO8
Figure 13. Power derating curves
DFN8
Package Power Dissipation (W)
3
0.6
4-layer PCB
4-layer PCB
2
No heatsink
0.4
1
0.2
No Heat sink
0.0
0
0 25 50 75 100 Ambiant Temperature (C) 125 150
0
25
50 75 100 Ambiant Temperature (C)
125
150
10/32
TS488-TS489
Electrical characteristics
Figure 14. Signal to noise ratio vs. power supply voltage
110 108 106 104 102 RL=16 100 98 RL=32 A-weighted Filter Av=-1, T AMB =25C Cb=1F THD+N<0.4%
Figure 15. Signal to noise ratio vs. power supply voltage
106 104 102 100 RL=16 98 RL=32 96 94 Unweighted Filter (20Hz-20kHz) Av=-1, T AMB =25C Cb=1F THD+N<0.4%
Signal to Noise Ratio (dB)
2
3
4
Power Supply Voltage (V)
5
6
Signal to Noise Ratio (dB)
2
3
4
Power Supply Voltage (V)
5
6
Figure 16. Signal to noise ratio vs. power supply voltage
106 104 102 100 98 96 94 RL=32 A-weighted Filter Av=-2, T AMB =25C Cb=1F THD+N<0.4%
Figure 17. Signal to noise ratio vs. power supply voltage
102 100 98 96 94 RL=32 92 90 Unweighted Filter (20Hz-20kHz) Av=-2, T AMB =25C Cb=1F THD+N<0.4% RL=16
Signal to Noise Ratio (dB)
RL=16
2
3
4
Power Supply Voltage (V)
5
6
Signal to Noise Ratio (dB)
2
3
4
Power Supply Voltage (V)
5
6
Figure 18. Signal to noise ratio vs. power supply voltage
100 98 96 94 RL=16 92 RL=32 90 88 A-weighted Filter Av=-4, T AMB =25C Cb=1F THD+N<0.4%
Figure 19. Signal to noise ratio vs. power supply voltage
98 96 94 92 90 RL=32 88 86 RL=16 Unweighted Filter (20Hz-20kHz) Av=-4, T AMB =25C Cb=1F THD+N<0.4%
Signal to Noise Ratio (dB)
2
3
4
Power Supply Voltage (V)
5
6
Signal to Noise Ratio (dB)
2
3
4
Power Supply Voltage (V)
5
6
11/32
Electrical characteristics
TS488-TS489
Figure 20. Power dissipation vs. output power Figure 21. Power dissipation vs. output power per channel per channel
30 Vcc=2.5V, F=1kHz, THD+N<1%
Power Dissipation (mW) Power Dissipation (mW)
40 Vcc=3.3V, F=1kHz, THD+N<1% RL=16 35 30 25 20 15 10 5 0 5 10 15 20 25 30 Output Power (mW) 35 40 0 0 10 20 30 40 50 Output Power (mW) 60 70 RL=16 RL=32
25 20 15 10 5 0
RL=32
Figure 22. Power dissipation vs. output power Figure 23. Power supply rejection ratio vs. per channel frequency
100 Vcc=5V, F=1kHz, THD+N<1%
Power Dissipation (mW)
0
RL=16
-10 -20
PSRR (dB)
Inputs grounded, Av=-1, RL=16 , Cb=1F, T AMB =25C
80
60 RL=32 40
-30 Vcc=2.5V -40 -50 Vcc=5V -60 Vcc=3.3V
20
-70
0
-80
0
20
40
60 80 100 120 Output Power (mW)
140
160
20
100
1k
Frequency (Hz)
10k
20k
Figure 24. Power supply rejection ratio vs. frequency
0 -10 -20 Av=-4
PSRR (dB)
Figure 25. Power supply rejection ratio vs. frequency
0 -10 -20 Cb=1F
PSRR (dB)
Inputs grounded, Vcc=3.3V, RL=16 , Cb=1F, T AMB =25C
Inputs grounded, Av=-1, RL=16 , Vcc=3.3V, TAMB =25C
-30 Av=-2 -40 -50 -60 -70 -80 20 100 1k
Frequency (Hz)
-30 -40 -50 -60 -70
Cb=470nF Cb=220nF Cb=100nF
Av=-1
10k
20k
-80 20
100
1k
Frequency (Hz)
10k
20k
12/32
TS488-TS489
Electrical characteristics
Figure 26. Total harmonic distortion plus noise vs. output power
10 F=1kHz, R L=16 A V =-1, T AMB =25C 1
THD+N (%)
Figure 27. Total harmonic distortion plus noise vs. output power
10 F=20kHz, R L=16 A V =-1, T AMB =25C BW=20Hz-120kHz
THD+N (%)
BW=20Hz-120kHz V CC =5V 1
V CC =5V V CC =3.3V
0.1
V CC =3.3V V CC =2.5V
0.1
V CC=2.5V
0.01
1E-3
1
10
Output Power (mW)
100
200
0.01
1
10
Output Power (mW)
100
200
Figure 28. Total harmonic distortion plus noise vs. output power
10 F=1kHz, R L=32 A V =-1, T AMB =25C 1
THD+N (%)
Figure 29. Total harmonic distortion plus noise vs. output power
10 F=20kHz, R L=32 A V =-1, T AMB =25C BW=20Hz-120kHz
THD+N (%)
BW=20Hz-120kHz V CC =5V 1
V CC =5V V CC=3.3V
0.1
V CC =3.3V V CC =2.5V
0.1
V CC =2.5V
0.01
1E-3
1
10
Output Power (mW)
100
200
0.01
1
10
Output Power (mW)
100
200
Figure 30. Total harmonic distortion plus noise vs. output power
10 F=1kHz, R L=600 A V =-1, T AMB =25C 1
THD+N (%)
Figure 31. Total harmonic distortion plus noise vs. output power
10 F=20kHz, R L=600 A V =-1, T AMB=25C 1
THD+N (%)
BW=20Hz-120kHz
V CC=5V V CC=3.3V
BW=20Hz-120kHz
V CC =5V V CC =3.3V
0.1
V CC =2.5V
0.1
V CC =2.5V
0.01
0.01
1E-3 0.01
0.1
Output Voltage (V RMS )
1
3
1E-3 0.01
0.1
Output Voltage (V RMS )
1
3
13/32
Electrical characteristics
TS488-TS489
Figure 32. Total harmonic distortion plus noise vs. output power
10 F=1kHz, R L=16 A V =-2, T AMB =25C 1
THD+N (%)
Figure 33. Total harmonic distortion plus noise vs. output power
10 F=20kHz, R L=16 A V =-2, T AMB =25C BW=20Hz-120kHz
THD+N (%)
V CC =5V
BW=20Hz-120kHz V CC =5V 1
V CC =3.3V V CC =2.5V 0.1
0.1
V CC =3.3V V CC =2.5V
0.01
1E-3
1
10
Output Power (mW)
100
200
0.01
1
10
Output Power (mW)
100
200
Figure 34. Total harmonic distortion plus noise vs. output power
10 F=1kHz, R L=32 A V =-2, T AMB =25C 1
THD+N (%)
Figure 35. Total harmonic distortion plus noise vs. output power
10 F=20kHz, R L=32 A V =-2, T AMB =25C BW=20Hz-120kHz
THD+N (%)
BW=20Hz-120kHz V CC =5V 1
V CC =5V V CC=3.3V
0.1
V CC =3.3V V CC =2.5V
0.1
V CC =2.5V
0.01
1E-3
1
10
Output Power (mW)
100
200
0.01
1
10
Output Power (mW)
100
200
Figure 36. Total harmonic distortion plus noise vs. output power
10 F=1kHz, R L=600 A V =-2, T AMB =25C 1
THD+N (%)
Figure 37. Total harmonic distortion plus noise vs. output power
10 F=20kHz, R L=600 A V =-2, T AMB=25C BW=20Hz-120kHz
THD+N (%)
BW=20Hz-120kHz
V CC=5V V CC=3.3V 1
V CC =5V V CC =3.3V V CC =2.5V
0.1
V CC =2.5V
0.1 0.01
1E-3 0.01
0.1
Output Voltage (V RMS )
1
3
0.01 0.01
0.1
Output Voltage (V RMS )
1
3
14/32
TS488-TS489
Electrical characteristics
Figure 38. Total harmonic distortion plus noise vs. output power
10 F=1kHz, R L=16 A V =-4, T AMB =25C 1
THD+N (%)
Figure 39. Total harmonic distortion plus noise vs. output power
10 F=20kHz, R L=16 A V =-4, T AMB =25C BW=20Hz-120kHz
THD+N (%)
BW=20Hz-120kHz
V CC =5V V CC =3.3V
0.1 V CC =2.5V 0.01
1
V CC =5V V CC =3.3V V CC =2.5V
1E-3
1
10
Output Power (mW)
100
200
0.1
1
10
Output Power (mW)
100
200
Figure 40. Total harmonic distortion plus noise vs. output power
10 F=1kHz, R L=32 A V =-4, T AMB =25C 1
THD+N (%)
Figure 41. Total harmonic distortion plus noise vs. output power
10 F=20kHz, R L=32 A V =-4, T AMB =25C BW=20Hz-120kHz
THD+N (%)
V CC=5V
V CC=5V
BW=20Hz-120kHz 1 V CC =3.3V
V CC =3.3V V CC =2.5V 0.1
0.1 V CC =2.5V 0.01
1E-3
1
10
Output Power (mW)
100
200
0.01
1
10
Output Power (mW)
100
200
Figure 42. Total harmonic distortion plus noise vs. output power
10 F=1kHz, R L=600 A V =-4, T AMB =25C 1
THD+N (%)
Figure 43. Total harmonic distortion plus noise vs. output power
10 F=20kHz, R L=600 A V =-4, T AMB=25C BW=20Hz-120kHz
THD+N (%)
BW=20Hz-120kHz
V CC=5V V CC=3.3V 1
V CC =5V V CC =3.3V V CC =2.5V
0.1
V CC =2.5V
0.1 0.01
1E-3 0.01
0.1
Output Voltage (V RMS )
1
3
0.01 0.01
0.1
Output Voltage (V RMS )
1
3
15/32
Electrical characteristics
TS488-TS489
Figure 44. Total harmonic distortion plus noise vs. frequency
1 R L=16 , A V =-1 BW=20Hz-120kHz TAMB =25C
THD+N (%)
Figure 45. Total harmonic distortion plus noise vs. frequency
1 R L=32 , A V =-1 BW=20Hz-120kHz TAMB =25C
THD+N (%)
0.1 Vcc=2.5V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW 0.01
0.1 Vcc=2.5V, Po=12mW Vcc=3.3V, Po=25mW Vcc=5V, Po=60mW 0.01
1E-3 20
100
1k
Frequency (Hz)
10k
20k
1E-3 20
100
1k
Frequency (Hz)
10k
20k
Figure 46. Total harmonic distortion plus noise vs. frequency
1 R L=600 , A V =-1 BW=20Hz-120kHz TAMB =25C
THD+N (%)
Figure 47. Total harmonic distortion plus noise vs. frequency
1 R L=16 , A V =-2 BW=20Hz-120kHz TAMB =25C
THD+N (%)
0.1 Vcc=2.5V, Vo=0.7V RMS Vcc=3.3V, Vo=1V RMS 0.01 Vcc=5V, Po=1.6V RMS
0.1 Vcc=2.5V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW 0.01
1E-3 20
100
1k
Frequency (Hz)
10k
20k
1E-3 20
100
1k
Frequency (Hz)
10k
20k
Figure 48. Total harmonic distortion plus noise vs. frequency
1 R L=32 , A V =-2 BW=20Hz-120kHz TAMB =25C
THD+N (%)
Figure 49. Total harmonic distortion plus noise vs. frequency
1 R L=600 , A V =-2 BW=20Hz-120kHz TAMB =25C
THD+N (%)
0.1
Vcc=2.5V, Po=12mW Vcc=3.3V, Po=25mW Vcc=5V, Po=60mW
0.1 Vcc=2.5V, Vo=0.7V RMS Vcc=3.3V, Vo=1V RMS 0.01 Vcc=5V, Po=1.6V RMS
0.01
1E-3 20
100
1k
Frequency (Hz)
10k
20k
1E-3 20
100
1k
Frequency (Hz)
10k
20k
16/32
TS488-TS489
Electrical characteristics
Figure 50. Total harmonic distortion plus noise vs. frequency
1 R L=16 , A V =-4 BW=20Hz-120kHz TAMB =25C
THD+N (%)
Figure 51. Total harmonic distortion plus noise vs. frequency
1 R L=32 , A V =-4 BW=20Hz-120kHz TAMB =25C
THD+N (%)
0.1 Vcc=2.5V, Po=20mW Vcc=3.3V, Po=40mW
0.1 Vcc=2.5V, Po=12mW Vcc=3.3V, Po=25mW 0.01
0.01
Vcc=5V, Po=100mW 1E-3 20 100 1k
Frequency (Hz)
Vcc=5V, Po=60mW 10k 20k 1E-3 20 100 1k
Frequency (Hz)
10k
20k
Figure 52. Total harmonic distortion plus noise vs. frequency
1 R L=600 , A V =-4 BW=20Hz-120kHz TAMB =25C
THD+N (%)
Figure 53. Output power vs. load resistance
75 Vcc=2.5V, F=1kHz TAMB =25C
Output Power (mW)
THD+N=10% 50
BW=20Hz-120kHz
0.1 Vcc=2.5V, Vo=0.7V RMS Vcc=3.3V, Vo=1V RMS 0.01
THD+N=1% 25
Vcc=5V, Po=1.6V RMS 1E-3 20 100 1k
Frequency (Hz)
10k
20k
0
8
16
24
32
40
48
56
64
Load Resistance ()
Figure 54. Output power vs. load resistance
125 Vcc=3.3V, F=1kHz TAMB =25C
Figure 55. Output power vs. load resistance
250 Vcc=5V, F=1kHz TAMB =25C THD+N=10% BW=20Hz-120kHz
100
Output Power (mW)
75 THD+N=1% 50
Output Power (mW)
THD+N=10%
BW=20Hz-120kHz
200
150 THD+N=1% 100
25
50
0
8
16
24
32
40
48
56
64
0
8
16
24
32
40
48
56
64
Load Resistance ()
Load Resistance ()
17/32
Electrical characteristics
TS488-TS489
Figure 56. Output power vs. power supply voltage
240 R L=16 , F=1kHz 200
Output Power (mW)
Figure 57. Output power vs. power supply voltage
140 R L=32 , F=1kHz 120
Output Power (mW)
TAMB =25C BW=20Hz-120kHz
T AMB =25C BW=20Hz-120kHz
160 120 80 40 0 THD+N=10%
100 80 60 THD+N=10% 40 20 0 THD+N=1%
THD+N=1% 2 3 4
Power Supply Voltage (V)
5
6
2
3
4
Power Supply Voltage (V)
5
6
Figure 58. Output voltage swing vs. power supply voltage
6 T AMB =25C 5 4 3 RL=32 2 1 0 RL=16
Figure 59. Current consumption vs. power supply voltage
3 No Loads
Current Consumption (mA)
T AMB = 85C
TAMB = 25C
VOH & VOL (V)
2
1 T AMB= -40C
2
3
4
Power Supply Voltage (V)
5
6
0
2
3
4
Power Supply Voltage (V)
5
6
Figure 60. Current consumption vs. standby voltage
2.5 TS488, T AMB =85C
Current Consumption (mA)
Figure 61. Current consumption vs. standby voltage
2.5
2.0 TS488, T AMB =25C 1.5 TS488, TAMB =-40C 1.0
Current Consumption (mA)
2.0
1.5
TS489, T AMB=85C TS489, TAMB =25C TS489, TAMB =-40C
1.0
0.5 V CC=2.5V 0.0 0.0 0.5 1.0 1.5 2.0 2.5
0.5 V CC =2.5V 0.0 0.0 0.5 1.0 1.5 2.0 2.5
Standby Voltage (V)
Standby Voltage (V)
18/32
TS488-TS489
Electrical characteristics
Figure 62. Current consumption vs. standby voltage
2.5 TS488, TAMB =85C 2.0 TS488, T AMB =25C 1.5 TS488, T AMB =-40C
Figure 63. Current consumption vs. standby voltage
3.5 3.0
Current Consumption (mA)
TS489, T AMB=85C TS489, T AMB =25C TS489, T AMB=-40C
Current Consumption (mA)
2.5 2.0 1.5 1.0 0.5
1.0
0.5 V CC =3.3V 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
V CC =3.3V 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Standby Voltage (V)
Standby Voltage (V)
Figure 64. Current consumption vs. standby voltage
6 TS489, T AMB =85C
Current Consumption (mA)
Figure 65. Current consumption vs. standby voltage
6 5 4 TS489, TAMB =-40C 3 2 1 V CC=5V 0 0.0 TS489, TAMB =85C TS489, T AMB =25C
4 3 2 1
TS489, T AMB =25C TS489, T AMB =-40C
V CC =5V 0 0.0 0.5 1.0 1.5 2.0 4 5 0.5 1.0 1.5 2.0
Current Consumption (mA)
5
4
5
Standby Voltage (V)
Standby Voltage (V)
Figure 66. Crosstalk vs. frequency
0 -20
Crosstalk (dB)
Figure 67. Crosstalk vs. frequency
0 Vcc=2.5V, RL=32 Av=-1, Po=12mW T AMB =25C
Vcc=2.5V, RL=16 Av=-1, Po=20mW T AMB=25C
Crosstalk (dB)
-20 -40 -60
-40 -60 -80 -100 -120 20
OUT2 to OUT1
OUT1 to OUT2
OUT2 to OUT1 -80 -100 -120 20
OUT1 to OUT2
100
1k
Frequency (Hz)
10k
20k
100
1k
Frequency (Hz)
10k
20k
19/32
Electrical characteristics
TS488-TS489
Figure 68. Crosstalk vs. frequency
0 -20
Crosstalk (dB)
Figure 69. Crosstalk vs. frequency
0 Vcc=3.3V, RL=32 Av=-1, Po=25mW TAMB =25C
Vcc=3.3V, RL=16 Av=-1, Po=40mW TAMB =25C
Crosstalk (dB)
-20 -40 -60
-40 -60 -80 -100 -120 20
OUT2 to OUT1
OUT1 to OUT2
OUT2 to OUT1 -80 -100 -120 20
OUT1 to OUT2
100
1k
Frequency (Hz)
10k
20k
100
1k
Frequency (Hz)
10k
20k
Figure 70. Crosstalk vs. frequency
0 -20
Crosstalk (dB)
Figure 71. Crosstalk vs. frequency
0 Vcc=5V, RL=32 Av=-1, Po=60mW T AMB =25C
Vcc=5V, RL=16 Av=-1, Po=100mW TAMB =25C
Crosstalk (dB)
-20 -40 -60
-40 -60 -80 -100 -120 20
OUT2 to OUT1
OUT1 to OUT2
OUT2 to OUT1 -80 -100 -120 20
OUT1 to OUT2
100
1k
Frequency (Hz)
10k
20k
100
1k
Frequency (Hz)
10k
20k
Figure 72. Crosstalk vs. frequency
0 -20
Crosstalk (dB)
Figure 73. Crosstalk vs. frequency
0 Vcc=2.5V, RL=32 Av=-4, Po=12mW T AMB =25C
Vcc=2.5V, RL=16 Av=-4, Po=20mW T AMB=25C
Crosstalk (dB)
-20 -40 -60 -80 -100 -120 20
-40 -60 -80 -100 -120 20 OUT2 to OUT1 OUT1 to OUT2
OUT2 to OUT1
OUT1 to OUT2
100
1k
Frequency (Hz)
10k
20k
100
1k
Frequency (Hz)
10k
20k
20/32
TS488-TS489
Electrical characteristics
Figure 74. Crosstalk vs. frequency
0 -20
Crosstalk (dB)
Figure 75. Crosstalk vs. frequency
0 Vcc=3.3V, RL=32 Av=-4, Po=25mW TAMB =25C
Vcc=3.3V, RL=16 Av=-4, Po=40mW TAMB =25C
Crosstalk (dB)
-20 -40 -60 -80 -100 -120 20
-40 -60 -80 -100 -120 20 OUT2 to OUT1 OUT1 to OUT2
OUT2 to OUT1
OUT1 to OUT2
100
1k
Frequency (Hz)
10k
20k
100
1k
Frequency (Hz)
10k
20k
Figure 76. Crosstalk vs. frequency
0 -20
Crosstalk (dB)
Figure 77. Crosstalk vs. frequency
0 Vcc=5V, RL=32 Av=-4, Po=60mW T AMB =25C
Vcc=5V, RL=16 Av=-4, Po=100mW TAMB =25C
Crosstalk (dB)
-20 -40 -60 -80 -100 -120 20
-40 -60 -80 -100 -120 20 OUT2 to OUT1 OUT1 to OUT2
OUT2 to OUT1
OUT1 to OUT2
100
1k
Frequency (Hz)
10k
20k
100
1k
Frequency (Hz)
10k
20k
21/32
Application information
TS488-TS489
4
4.1
Application information
Power dissipation and efficiency
Hypotheses:

Voltage and current in the load are sinusoidal (Vout and Iout). Supply voltage is a pure DC source (VCC).
V OUT = V PEAK sin t ( V )
Regarding the load we have:
and
V OUT I OUT = -------------- ( A ) RL
and
P OUT V PEAK = ---------------- ( A ) 2R L
2
The average current delivered by the power supply voltage is:
I CC
AVG
V PEAK V PEAK 1 = ------ ---------------- sin ( t ) dt = ---------------- ( A ) RL R L 2
0
Figure 78. Current delivered by power supply voltage in single-ended configuration
Icc (t) Vpeak/RL
IccAVG 0 T/2 T 3T/2 2T Time
The power delivered by power supply voltage is:
P supply = V CC I CC
AVG
(W)
So, the power dissipation by each power amplifier is
P diss = P supply - P OUT ( W ) 2V CC P diss = ------------------ P OUT - P OUT ( W ) RL
and the maximum value is obtained when:
P diss =0 P OUT
22/32
TS488-TS489 and its value is:
P diss
MAX
Application information
V CC = ------------ ( W ) 2 RL
2
Note:
This maximum value depends only on power supply voltage and load values.
V peak P OUT = ------------------ = -----------------P supply 2V CC
The efficiency is the ratio between the output power and the power supply:
The maximum theoretical value is reached when Vpeak = VCC/2, so
= -- = 78.5% 4
4.2
Total power dissipation
The TS488/9 is stereo (dual channel) amplifier. It has two independent power amplifiers. Each amplifier produces heat due to its power dissipation. Therefore the maximum die temperature is the sum of each amplifier's maximum power dissipation. It is calculated as follows:

Pdiss R = Power dissipation due to the right channel power amplifier. Pdiss L = Power dissipation due to the left channel power amplifier. Total Pdiss = Pdiss R + Pdiss L (W)
Typically, Pdiss R is equal to Pdiss L, giving:
TotalP diss = 2P dissR = 2P dissL 2 2V CC TotalP diss = ---------------------- P OUT - 2P OUT RL
4.3
Lower cut-off frequency
The lower cut-off frequency FCL of the amplifier depends on input capacitors Cin and output capacitors Cout. The input capacitor Cin (output capacitor Cout) in serial with the input resistor Rin (load resistor RL) of the amplifier is equivalent to a first order high pass filter. Assuming that FCL is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of the Cin (Cout) is:
1 C in = --------------------------------------2 F CL R in 1 C out = ------------------------------------2 F CL R L
23/32
Application information
TS488-TS489
Figure 79. Lower cut-off frequency vs. input capacitor
10k Rin=10k
Lower Cut-off frequency (Hz)
Figure 80. Lower cut-off frequency vs. output capacitor
10k R L =16
Lower Cut-off frequency (Hz)
Rin=20k 1k Rin=50k Rin=100k
R L=32 1k R L =600 100
100
10
1
10
Cin (nF)
100
1000
10 0.1
1
10 Cout (F)
100
1000
Note:
In case FCL is kept the same for calculation, It must be taken in account that the 1st order high-pass filter on the input and the 1st order high-pass filter on the output create a 2nd order high-pass filter in the audio signal path with an attenuation 6dB on FCL and a roll-off 40db decade.
4.4
Higher cut-off frequency
In the high frequency region, you can limit the bandwidth by adding a capacitor Cfeed in parallel with Rfeed. It forms a low-pass filter with a -3dB cut-off frequency FCH. Assuming that FCH is highest frequency to be amplified (with a 3dB attenuation), the maximum value of Cfeed is:
1 F CH = -------------------------------------------------2 R feed C feed
Figure 81. Higher cut-off frequency vs. feedback capacitor
100k
Higher Cut-off Frequency (kHz)
Rfeed=10k Rfeed=20k
10k
Rfeed=40k 1k Rfeed=80k
100 0.01
0.1
1 Cfeed (F)
10
100
24/32
TS488-TS489
Application information
4.5
Gain setting
In the flat frequency response region (with no effect from Cin, Cout, Cfeed), the output voltage is:
R feed V OUT = V IN - ------------- = V IN A V R -
in
The gain AV is:
R feed A V = - ------------R in
4.6
Decoupling of the circuit
Two capacitors are needed to properly bypass the TS488 (TS489), a power supply capacitor Cs and a bias voltage bypass capacitor Cb. Cs has a strong influence on the THD+N in the high frequency range (above 7kHz) and indirectly on the power supply disturbances. With 1F, you can expect THD+N performance to be similar to the one shown in the datasheet. If Cs is lower than 1F, the THD+N increases in the higher frequencies and disturbances on the power supply rail are less filtered. On the contrary, if Cs is higher than 1F, the disturbances on the power supply rail are more filtered. Cb has an influence on the THD+N in the low frequency range. Its value is critical on the PSRR with grounded inputs in the lower frequencies:

If Cb is lower than 1F, the THD+N improves and the PSRR worsens. If Cb is higher than 1F, the benefit on the THD+N and PSRR is small.
Note:
The input capacitor Cin also has a significant effect on the PSRR at lower frequencies. The lower the value of Cin, the higher the PSRR.
4.7
Standby mode
When the standby mode is activated an internal circuit of the TS488 (TS489) is charged (see Figure 82). A time required to change the internal circuit is a few microseconds. Figure 82. Internal equivalent schematic of the TS488 (TS489) in standby mode
TS488/9 Vin1 25K BYPASS 25K Vin2 600K Vout2 600K GND Vout1
25/32
Application information
TS488-TS489
4.8
Wake-up time
When the standby is released to put the device ON, the bypass capacitor Cb is charged immediately. As Cb is directly linked to the bias of the amplifier, the bias will not work properly until the Cb voltage is correct. The time to reach this voltage plus a time delay of 20ms (pop precaution) is called the wake-up time or tWU; it is specified in the electrical characteristics table with Cb = 1F. If Cb has a value other than 1F, tWU can be calculated by applying the following formulas or can be read directly from Figure 83.
C b 2.5 t WU = --------------------- + 20 0.03125 [ms;F ]
Figure 83. Typical wake-up time vs. bypass capacitance
400 TAMB=25C 350 300 250 200 150 100 50 0 0 1 2 3 4 5
Wake-up Time (ms)
Cb (F)
Note:
It is assumed that the Cb voltage is equal to 0V. If the Cb voltage is not equal to 0V, the wake-up time is shorter.
4.9
POP performance
Pop performance is closely related to the size of the input capacitor Cin. The size of Cin is dependent on the lower cut-off frequency and PSRR values requested. In order to reach low pop, Cin must be charged to VCC/2 in less than 20ms. To follow this rule, the equivalent input constant time (RinCin) should be less then 6.7ms: in = Rin x Cin < 0.0067 (s) Example calculation: In the typical application schematic Rin is 20k and Cin is 330nF. The lower cut-off frequency (-3db attenuation) is given by the following formula:
1 F CL = ------------------------------------2 R in C in
26/32
TS488-TS489 With the values above, the result is FCL=25Hz. In this case, in = Rin x Cin=6.6ms.
Application information
This value is sufficient with regard to the previous formula, thus we can state that the pop is imperceptible.
Connecting the headphones
Generally headphones are connected using jack connectors. To prevent a pop in the headphones when plugging in the jack, a pulldown resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged even when the headphones are not plugged in. Pulldown resistors with a value of 1 k are high enough to be a negligible load, and low enough to charge the capacitors Cout in less than one second. Note: The pop&click reduction circuitry works properly only when both channels have the same value for the external components Cin, Cout, Rload and Rpulldown.
27/32
Package mechanical data
TS488-TS489
5
Package mechanical data
In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com.
5.1
MiniSO-8 package
28/32
TS488-TS489
Package mechanical data
5.2
DFN8 package
QFN8 (2x2) MECHANICAL DATA D
mm. DIM. MIN. A A1 A3 b D2 E2 L D E aaa bbb ccc 0.20 1.45 0.75 0.225 TYP MAX. MIN. TYP. MAX. inch
0.51 0.80
0.55 0.90
0.02 0.15 0.25 1.60 0.90 0.325 2.00 2.00 0.15 0.10 0.10
0.60 1.00
0.05
0.020 0.031
0.022 0.035
0.001 0.006
0.024 0.039
0.002
0.30 1.70 1.00 0.425
0.008 0.057 0.030 0.009
0.010 0.063 0.035 0.013 0.079 0.079 0.006 0.004 0.004
0.012 0.067 0.039 0.017
D A B
4
INDEX AREA (D/2 xE/2) aaa C 2x
aaa C 2x 10 ccc C TOP VIEW
A
A3
E
C
SEATING PLANE
8 NX
0.08 C
INDEX AREA (D/2 xE/2) SIDE VIEW
e
4
A1
NX b bbb
7
PIN#1 ID
CA B
Exposed Pad
NX k
BOTTOM VIEW
NX L
D2
E2
29/32
Ordering information
TS488-TS489
6
Ordering information
Table 8. Order codes
Temperature range Package MiniSO-8 -40C to +85C DFN8 MiniSO-8 DFN8 Tape & reel Packing Marking K488 K88 K489 K89
Part number TS488IST TS488IQT TS489IST TS489IQT
30/32
TS488-TS489
Revision history
7
Revision history
Table 9.
Date 2-Jan-2006 1-Feb-2006
Document revision history
Revision 1 2 Changes First release corresponding to the product preview version. Removal of typical application schematic on first page (it appears in Figure 1 on page 3). Minor grammatical and formatting corrections throughout. Update of marking. Update of DFN8 package height. Editorial update. Revision corresponding to the release to production of the TS488 TS489.
4-Aug-2006
3
15-Sep-2006
4
31/32
TS488-TS489
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
32/32


▲Up To Search▲   

 
Price & Availability of TS488IST

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X